

XIV EUROPEAN PATIENTS' RIGHTS DAY

ONE health approach, MULTIPLE answers: Citizens' engagement & stakeholders' actions to tackle antimicrobial resistance and sustain EU progress

> DIGITAL CONFERENCE 18th & 19th November 2020

REDUCING HEALTHCARE-ASSOCIATED INFECTIONS INCIDENCE BY A PROBIOTIC-BASED SANITATION SYSTEM: A MULTICENTRE, PROSPECTIVE, INTERVENTION STUDY

Luca Arnoldo

Introduction

- 1. Air pollution and climate change
- 2. Non communicable diseases (NCDs)
- 3. Global influenza pandemic
- 4. Fragile and vulnerable settings
- 5. Antimicrobial resistance
- 6. Ebola and other high-threat pathogens
- 7. Weak primary healthcare
- 8. Vaccine hesitancy
- 9. Dengue
- 10. HIV

Home / Newsroom / Spotlight / Ten threats to global health in 2019

Figure 4. Klebsiella pneumoniae. Percentage of invasive isolates resistant to third-generation cephalosporins (cefotaxime or/and ceftriaxone or/and ceftazidime), by country, EU/EEA, 2019

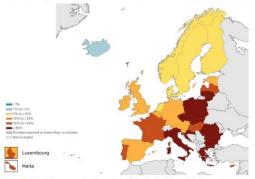


Figure 5. Klebsiella pneumoniae. Percentage of invasive isolates resistant to carbapenems (imipenem or/and meropenem), by country, EU/EEA, 2019

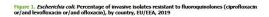


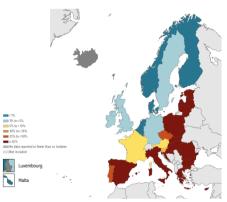
Figure 8. Staphylococcus aureus. Percentage of invasive isolates resistant to meticillin (MRSA), by country, EU/EEA, 2019

Figure 10. Enterococcus faecium. Percentage of invasive isolates resistant to vancomycin, by country, EU/EEA, 2019



Figure 2. Escherichia coli. Percentage of invasive isolates resistant to third-generation cephalosporins (cefotaxime or/and ceftriaxone or/and ceftazidime), by country, EU/EEA, 2019

olates with resistance to carbapenems


Figure 6. Pseudomonas aeruginosa. Percentage of invasive (imipenem or/and meropenem), by country, EU/EEA, 2019

In the second second

https://www.ecdc.europa.eu/en/publications-data/downloadable-tables-antimicrobial-consumption-annual-epidemiological-report-2019

Figure 7. Acinetobacter species. Percentage of invasive isolates with resistance to carbapenems (imipenem or/and meropenem), by country, EU/EEA, 2019

Naita

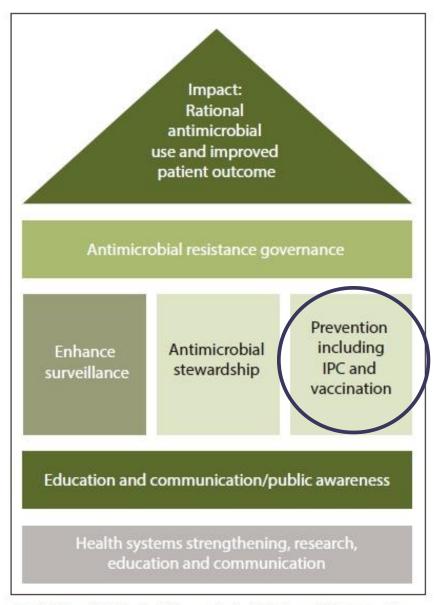
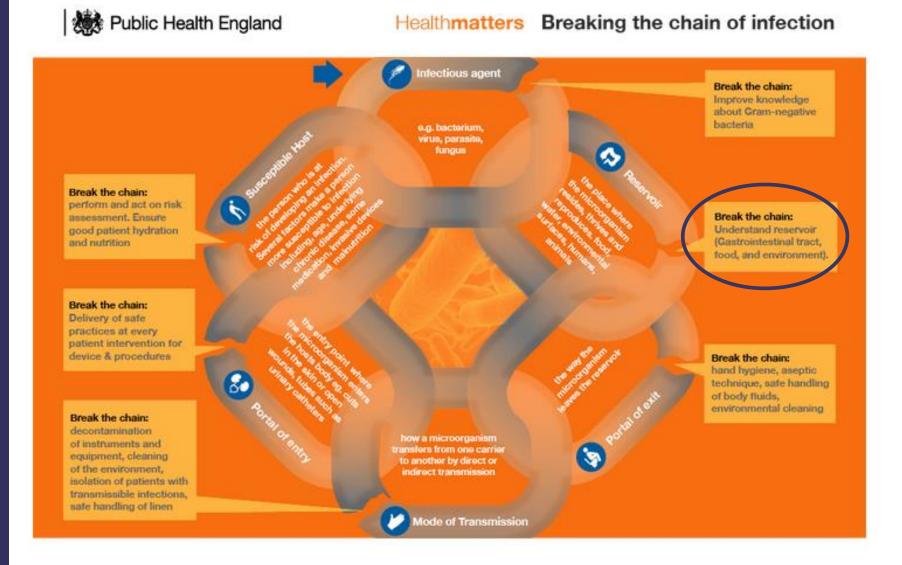



Fig. 1. Pillars of the South African antimicrobial stewardship strategy framework.^[6] (IPC = infection prevention and control.)

Preventing infections

Aim

- Evaluate the impact of environmental cleanliness through the Probiotic Cleaning Hygiene System (PCHS) on the incidence of healthcare-associated infections (HAIs) in acute care settings
- Probiotic Cleaning Hygiene System (PCHS)
 - Ecosustainable detergen conteings spores of Bacillus spp. – non pathogens

Data are available

RESEARCH ARTICLE

Reducing healthcare-associated infections incidence by a probiotic-based sanitation system: A multicentre, prospective, intervention study

Elisabetta Caselli^{1,2}*, Silvio Brusaferro³, Maddalena Coccagna², Luca Arnoldo³, Filippo Berloco⁴, Paola Antonioll⁵, Rosanna Tarricone⁶, Gabriele Pelissero⁷, Silvano Nola⁸, Vincenza La Fauci⁹, Alessandro Conte³, Lorenzo Tognon¹⁰, Giovanni Villone¹¹, Nelso Trua¹², Sante Mazzacane², for the SAN-ICA Study Group^{1,2,3,4,5,6,7,8,9,10,11,12}

PLoS One. 2018 Jul 12;13(7):e0199616

MDPI

Article

A Probiotic-Based Sanitation System for the Reduction of Healthcare Associated Infections and Antimicrobial Resistances: A Budget Impact Analysis

Rosanna Tarricone ^{1,2}, Carla Rognoni ^{1,*}, Luca Arnoldo ³, Sante Mazzacane ⁴ and Elisabetta Caselli ^{4,5}

Pathogens 2020 Jun 23;9(6):502

Infection and Drug Resistance

Dovepress ess to scientific and medical research

open Access Full Text Article

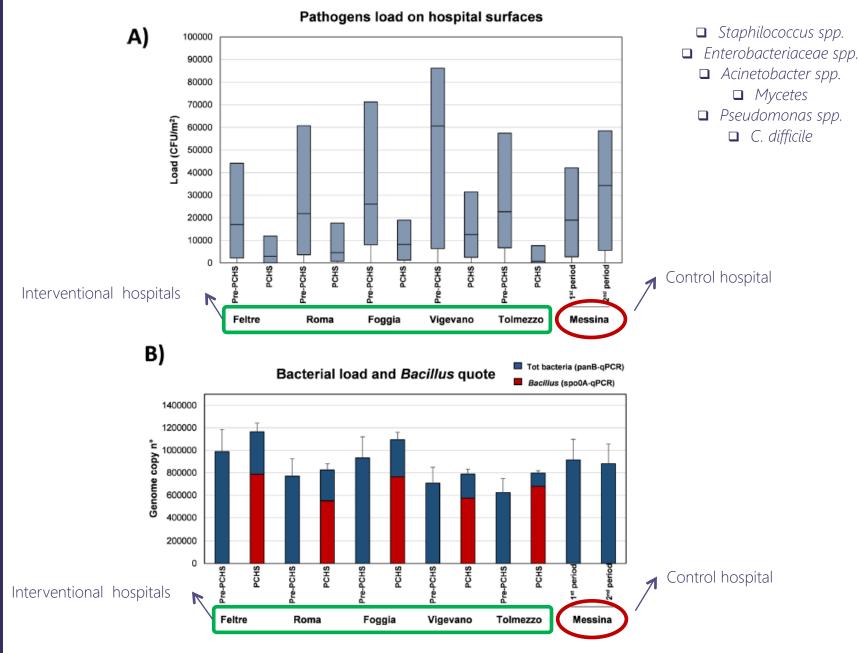
ORIGINAL RESEARCH

Impact of a probiotic-based hospital sanitation on antimicrobial resistance and HAI-associated antimicrobial consumption and costs: a multicenter study

Infect Drug Resist. 2019 Feb 27;12:501-510

Methods

- Pre-post interventional study
- □ 5 acute hospitals were included:
 - general medicine, geriatrics and neurological wards;
 - from different part of Italy: 3 in the north, 1 in centre and 1 in south
- Timetable:
 - 6 months of pre-interventional survey:
 - January-June 2016 for three hospitals: I_1
 - May-October 2016 for the other two: I₂
 - Pause period for the PCHS system start-up:
 - 6 months for I_1
 - $\bullet 2 \text{ months for } I_2$
 - 6 months of survey during PCHS application: January-June 2017 for all the five hospitals
- 1 control hospital especially included for the evaluation of the environmental impact

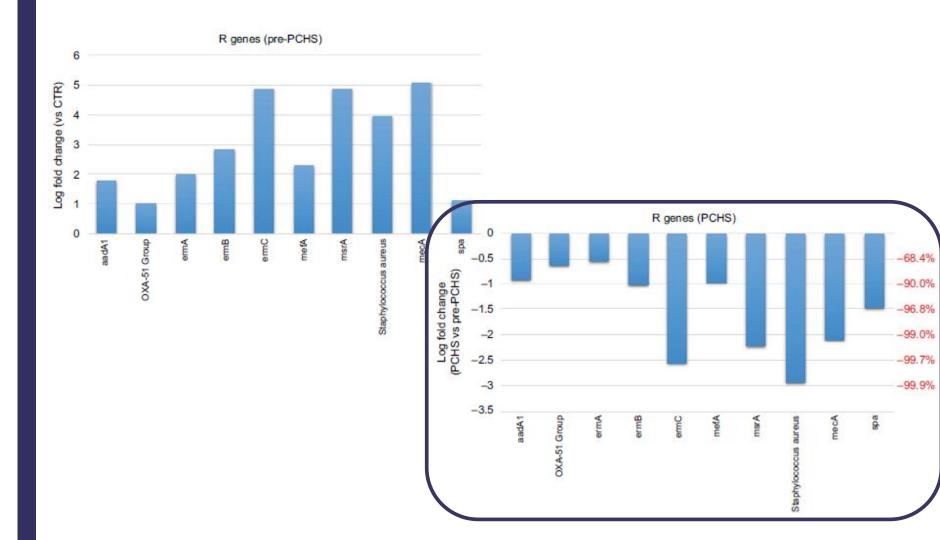

Patients characteristics

Patients characteristics	Pre-PCHS	PCHS
	Total patients No. (%)	Total patients No. (%)
Total	5,930	5,531
Gender: male	2,977 (50.2%)	2,928 (52.9%)
Age <65	1,518 (25.6%)	1,265 (22.9%)
Age 65–74	1,261 (21.3%)	1,177 (21.3%)
Age 75–84	1,821 (30.7%)	1,753 (31.7%)
Age ≥85	1,330 (22.4%)	1,336 (24.2%)
Incontinence	1,448 (24.4%)	1,369 (24.8%)
Disorientation	804 (13.6%)	747 (13.5%)
Self-sufficiency	3,671 (61.9%)	3,632 (65.7%)
Pressure sores	393 (6.6%)	237 (4.3%)
Surgery 30 day before	122 (2.1%)	80 (1.4%)
Ventilation	215 (3.6%)	161 (2.9%)
Parenteral nutrition	200 (3.4%)	141 (2.5%)
ATB 2 week before	566 (9.5%)	294 (5.3%)
MDRO at admission	131 (2.2%)	83 (1.5%)
Infection at admission	1,216 (20.5%)	1,089 (19.7%)
Urinary catheter (any type)	1,368 (23.1%)	1,166 (21.1%)
CVC	264 (4.5%)	260 (4.7%)

Table 2. Patient characteristics of the I1-I2 hospitals in the pre-PCHS and PCHS periods (11,461 patients).

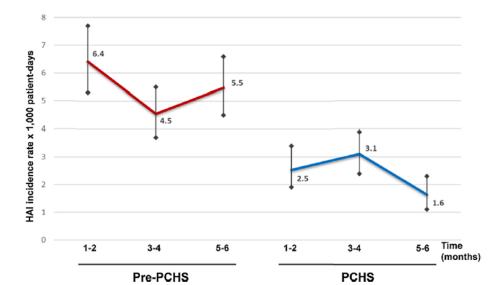
Self-sufficiency, ability to provide for themselves autonomously, measured by SSM (Self Sufficiency Matrix) scale; ATB, antibiotics; MDRO, multi drug resistant organism; CVC, central vascular catheter.

Evaluation of sample (sink, floor, bed footboard) for:


Table I Variations in individual pathogens' load on hospital surfaces during pre-PCHS and PCHS (CFU/m²)

Pathogen type	Pre-PCHS ^a	PCHS ^a	Decrease (%)
Aspergillus spp.	181±307	12±6	93.3
Candida spp.	2,597±1,798	1,108±559	57.3
Clostridium difficile	334±290	132±219	60.5
Pseudomonas aeruginosa	970±982	415±350	57.2
Acinetobacter baumannii	2,844±841	520±726	81.7
Enterobacteriaceae spp.	1,774±901	189±135	89.3
Staphylococcus spp.	26,947±17,293	4,674±3,799	82.7

Note: Results are expressed as mean value of CFU/m² \pm SD detected in the five enrolled hospitals.


Abbreviations: PCHS, Probiotic Cleaning Hygiene System; CFU, colony forming units.

Bacterial resistome

Comparison of HAI incidence between phases: pre-PCHS (Conventional Chemical Cleaning) PCHS

	All the population N. 11,461		Propensity score matching sample N. 8,320			
	Pre-PCHS	PCHS		Pre-PCHS	PCHS	
Cumulative incidence	4.8%	2.3%	OR 0.47	4.6%	2.4%	OR 0.47
of patients with at least on HAI	(284/5,930)	(128/5,531)	CI 95% 0.38-0.58	(191/4,160)	(100/4,160)	CI 95% 0.37-0.60
Incidence rate	5.4	2.4	OR 0.45	5.2	2.5	OR 0.47
x 1,000 hospitalisation days	(314/57,742)	(141/58,201)	CI 95% 0.36-0.54	(210/40,111)	(111/44,751)	CI 95% 0.38-0.60

Impact of risk factors on HAI onset

Table 5. Risk factors associated with HAI onset in patients of I1-I2 hospitals: Multivariable model*.

Population characteristics	Р	OR	95% CI
Male	0.01812	0.78	0.63-0.96
Age 65-74 vs Age <65	0.0047	1.71	1.18-2.48
Age 75-84 vs Age <65	0.0004	1.88	1.33-2.67
Age 85 or more vs Age <65	0.0026	1.78	1.22-2.58
Length of stay	p<0.0001	1.08	1.07-1.09
Incontinence	0.2253	0.85	0.66-1.10
Disorientation	0.0226	1.37	1.05-1.76
Self-sufficiency	0.5600	0.92	0.69-1.43
Pressure sores	0.9757	0.99	0.69-1.44
Ventilation	0.7702	1.07	0.68-1.67
ATB 2 week before	0.8479	0.97	0.68-1.37
MDRO at admission	0.6230	0.86	0.47-1.57
Urinary catheter (any type)	p<0.0001	2.68	2.10-3.41
CVC	0.0001	1.99	1.40-2.82
PCHS	p<0.0001	0.44	0.35-0.54

Conclusions

- Data suggests a positive effect of PCHS application in order to prevent the HAIs onset in the involved wards
- PCHS effect seems to be higher for the HAIs transmitted by contact
- Important to sustain the further researches:
 - other time period
 - different care settings

THE ELECTRIC LIGHT DID NOT COME FROM THE CONTINUOUS IMPROVEMENT OF CANDLES

(OREN HARARI)